College of Engineering, Computing and Applied Sciences

Reinventing an Ancient Art

The ancient art of paper-folding, or origami, utilizes simple techniques to transform a two-dimensional piece of paper into a complex, intricate, three-dimensional structure. Though traditionally used for ornamental artwork, students in the Origami-Inspired Manufacturing of Composite Parts Creative Inquiry took a more functional approach with origami.

Human Powered Vehicles

Each spring, ASME hosts a nationwide competition for engineering programs to develop a vehicle entirely powered by a human. While the thoughts of a human-powered vehicle may invoke images of a Fred Flintstone-esque rudimentary car for some, do not make this mistake. Over twenty members strong, this Creative Inquiry combines some of the best mechanical engineering students Clemson University has to offer to produce a cutting edge, innovative design capable of ranging from carrying groceries to endurance racing.

Apps R Us

Offering students the chance to develop apps for needs around Clemson’s campus, Dr. Roy Pargas, associate professor in the School of Computing, invites students to the Apps R Us Creative Inquiry team.

Can You See The Rain?


Rainfall, itself, seems like a simple concept, but have you ever stopped to think about how hard it rains, the amount that falls or even how a raindrop is shaped?

In the Creative Inquiry project High-Speed Imaging of Rainfall, undergraduate students collect images to investigate raindrop shape, size and fall velocity. They then analyze these images in the context of the environmental factors and processes that govern these raindrop characteristics. By doing so, this project may identify measurement errors in polarimetric weather radar, a type of radar used to locate precipitation, calculate its motion and collect rainfall amounts.

This research is funded by the National Science Foundation and designated as Award No. AGS 1144846. It is offered as a Creative Inquiry project to support the project’s goals to integrate teaching and research and help develop the pipeline of well-educated, research oriented students who will pursue graduate studies in this field of study.

Undergraduate students are involved in every facet of the research. Students help to establish field sites, learn how to properly install the rainfall instruments, analyze data and participate in writing reports. Rain data will be collected over a two-year period with the goal to analyze as much rain as possible.

During their project meetings, students discuss their research progress and findings with the team leader Dr. Firat Testik, an associate professor in the Department of Civil Engineering. Once the data is collected, studied and processed, Testik and his students intend to publish their findings and present them at professional conferences.

Testik regards the development of thinking skills as a fundamental part of this Creative Inquiry project. He also believes that working on this project will develop students’ originality.

“I want to keep the Creative Inquiry a little bit open-ended, and if there is a good problem we identify, I want us to follow that problem and seek some answers,” Testik said.

Testik’s students enjoy the practical experience they receive from this project. “I get to see hands-on experience. Every week we meet, we bounce ideas off each other so you’re actually in the process of coming up with the solutions at the end of the day,” Karuiam Booker, a senior civil engineering major, said.

Fellow senior civil engineering major Eric Hall shares his classmate’s opinion and also likes seeing the results of their own technology.

“Throughout this project, I encourage all of the students to be involved in publications through conferences, especially undergraduate research conferences,” Testik said. “I want them to send abstracts, posters or papers to these conferences and attend them as finitely as possible. I want to integrate this research as part of my teaching, so I see this as a great opportunity for undergrads to be exposed to a research environment, as it is important if they want to do research-based work as a career after graduation.”

The Sound Synthesizers


In the basement of Holtzendorf Hall on the Clemson campus, there is a lot of noise. Dr. William Park, associate professor of electrical engineering, and his team of nine students create the clamor while working on a project that will take them through the process of designing, building and mass-producing synthesizers.

“I have been interested in music since I began to learn piano when I was five years old,” Park said. “I began building electronic ‘doohickeys’ from kits when I was about twelve [and] I began building my first synthesizer from scratch—work which I eventually turned into my master’s project.”

Students working with Park come from a range of interests and experience, which are similar to his own. Walker Hagan, a freshman bioengineering major, is also interested in the correlation between music and science.

“Music is a hobby of mine so analyzing the theory of sound and the physics behind it all is interesting, especially when I can manipulate it through a keyboard. Simply listening to the sounds we can create with manipulations of voltages astounds me,” Hagan said. Mary Lawrence Thomson, a sophomore electrical engineering major agrees.

“I am a music minor, so it has been a really great way for me to combine my major with one of my other interests.”

Park describes the project as an ongoing attempt to deepen students’ knowledge in musical instruments and the engineering behind them. The goal of the project is to give students the opportunity to use hands-on experiences to learn about the mass-production of synthesizers, which are electronic musical instruments used to produce a wide variety of sounds. They are often controlled by a keyboard, which is how Park and his students control their machine. Park also hopes to illustrate the overall design process—from concept to marketable product—to his students by allowing them to learn various tools and techniques in the design and construction of electronic circuits and user interfaces.

“We don’t just design the circuit boards, but we also get to learn how to use the circuit board software, print out the design on the boards, etch the boards, design the graphics for the panel, and then install the individual panels into the final synthesizer,” Thomson said.

The beginning of the process involves designing and building circuit boards that control one aspect of the instrument. Students use trial-and-error to fine-tune their circuits and then move on to larger, more complex boards that will come together in one machine to control all functions and sounds. Engineering is not the only part involved in building these synthesizers; each instrument’s exterior appearance also plays an important role.
“From the standpoint of usability, a logical panel design is probably more important than pure aesthetics, but making it attractive does help to market a product,” Park said. “It not only sounds cool, it looks cool!”

As Park and his team continue working and learning, they will have first-hand experience that will eventually lead to the construction of the final synthesizer. The hands-on approach of the project has become an important way for students to practice what they learn in the classroom.

“I’ve learned more in this Creative Inquiry than in my electrical engineering coursework, so it has definitely helped me understand the practical sense of engineering,” Hagan said.

Most of all Park is happy to see his students having fun. “Essentially every student had the same reaction when they successfully hooked their first simple circuits up to the [test synthesizer], ‘That’s really cool!’”

Building Haiti on Bamboo


Nearly four years have passed since the earthquake in Haiti. The country of Haiti, though progressing forward in reconstruction, is nowhere near operating at the same speed it was before the 2010 destruction. A group of civil engineering students at Clemson University are developing a way to help restore Haiti. By researching the use of bamboo reinforced concrete, they hope to provide an economical and efficient way for Haitians to rebuild and recover.

Bamboo is about one-third the strength of steel Although not quite as strong, it is far less expensive and much easier to produce.

“We look into bamboo reinforced concrete because we know that bamboo can be grown in Haiti—it can be grown in just a couple months to get to its full height. It’s basically free and grows almost like weeds,” Dr. Weichiang Pang, assistant professor of Civil Engineering, explained.

Pang holds up a piece of bamboo about a foot long and around a half-inch thick. “This can hold around 1000 pounds of force.”

Assessments to test the strength of bamboo include putting a small sliver of bamboo in a machine that continuously pulls at the specimen.

“We test it in the frame there for tension capacity,” Pang said. “So, basically you will pull it apart and we see how much load it will take to break it. Based on that we can see the cross-section and calculate how much pressure it takes to break it. That’s how we’ve found that it is one-third of steel.”

Graduate student Nathan Schneider, pursuing his degree in Civil Engineering, points out the major breaking point of a bamboo.

“Most likely it’s going to break at the node. The bamboo is divided by the diaphragms so, that’s kind of where you can see the fibers are a lot more chaotic, the way they form. That’s generally the weaker part of the bamboo,” Schneider said. At around 1600 pounds of pressure, the bamboo will finally break.

“Well, if you’re falling off a cliff and you see if a piece of bamboo, it’s a safe move to grab it,” Pang said. Because of bamboo’s impressive strength, this Creative Inquiry team is experimenting with how to successfully strengthen concrete structures with the bamboo as that reinforcement.

“The other task we are doing right now is looking at the bonding between concrete and bamboo,” Pang said. “Bamboo is like wood, so it will absorb moisture. So, one thing we need to address is how to prevent it from absorbing moisture when we cast concrete.”

The team is also testing different lengths of bamboo in conjunction with different waterproofing techniques to ensure that the bamboo will be adhesive when cast to concrete. In working with bamboo-reinforced columns, students have created a new technique to bend bamboo.

“We just have a big PVC pipe that we hook up to a steam box and hook it up with a hose,” senior civil engineering major Austin Chalker explained. “It’s almost like a sauna that we can put up to fifteen pieces of bamboo into. It becomes flexible enough where you can bend and touch it side-to-side and turn into a complete circle. Then, we have a form that we just put up to nine at a time in and let it dry for thirty minutes, and it stays in that shape we formed.”

Schneider believes that this part of their research has been very distinctive. “Nobody’s done that before. So, that’s something that we haven’t found any other information about other people ever using,” said Schnider. “That’s been really kind of unique part to this research.”
Pang’s team is also excited to transfer their research into hands-on activities. “Last semester was more research based while this semester’s been cool transitioning into actually putting it together,” Corey Crowder, a civil engineer senior, said. “It’s definitely been a lot of fun. Especially seeing it all come together,” Schneider added.

Once the bamboo-reinforced concrete structures have been tested, the team hopes to travel to Haiti to introduce this idea to the population. Teaching Haitians how to rebuild their structures with bamboo reinforced concrete is now a feasible goal, and this team of students is determined to get there.